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A family of algorithms for simulation of unsteady nonisothermal capillary inter-
faces has been developed. The algorithms are based on a coordinate transformation
method. The time-dependent unknown physical domain is mapped onto a rectan-
gular computational domain, with the explicit form of the mapping function not
being known. Four types of temporal discretization are used leading to the first-
order accurate one-step implicit method, second-order accurate Crank—Nicolson
and trapezoidal methods and second-order accurate two-step implicit method. In all
cases, second-order finite-difference approximations were used for spatial discretiza-
tions. Various tests demonstrated that the algorithms deliver theoretically predicted
accuracy, even for very large interfacial distortions. The Crank—Nicolson and trape-
zoidal methods have been found to be conditionally stable and thus are not recom-
mended. (© 1998 Academic Press

1. INTRODUCTION

Zero gravity environment offers potential for development of novel material process
techniques. Control and optimization of many of these techniques critically depend or
complete understanding of all processes taking place in the liquid phase. Thermocap
effect, which is gravity independent, is expected to play a dominant role. Understandin
the dynamics of nonisothermal interfaces (including their stability and existence limits
therefore, imperative. It is further of interest to determine how the response of an inter
changes as a function of geometrical constraints and variations in heating strategies
main objective of this work is to develop an algorithm capable of accurate prediction of
response of a capillary interface subject to an arbitrary time-dependent heating.

Variation of surface tension as a function of the temperature induces a tangential f
along the interface which, in turn, generates motion in the adjacent phases. The sha
the interface results from the interaction between the surface tension and the pressur
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NONISOTHERMAL CAPILLARY INTERFACES 111

normal viscous forces generated by the convection field. Analysis of the topology of
interface requires, therefore, determination of the solution of a free boundary problen
the Navier—Stokes and energy equations. Since itis an interplay between the surface te
gradients and the viscous stresses that dominates the dynamics of the system, the:
effects have to be modelled very accurately.

Algorithms for free boundary problems for the Navier—Stokes equations have beer
viewed by Floryan and Rasmussen [1]. The algorithms can be based on Eule
Lagrangian, and mixed formulations. Our present interest is in stability limits correspc
ing to a transition between steady and oscillatory convection and in early stages of
interface fragmentation problem. These problems are best dealt with using Eulerian fo
lation. The methods described in this paper rely on an analytical time-dependent mag.
that transforms an unknown irregular physical domain into a fixed regular computatic
domain. The mapping function is unknown and has to be determined as part of the soll
procedure. The steady algorithm developed by Chen and Floryan [2] is based on the
principles and can be viewed as a special case of the unsteady algorithms described |
paper.

Alternative approaches, which may involve either fixed grids or adaptive grids, w
rejected for the reasons explained below. In the fixed grid approach, the interface trz
through a fixed grid and this leads to difficulties in accurate determination of the locat
orientation, and curvature of the interface between the grid points. The last two factor:
crucial in our problem because they affect the modelling of normal viscous stress and su
tension effects at the interface. In the latter approach, the grid is generated numerica
that one of the grid lines always overlaps with the interface. Interfacial effects can
accurately modelled, but the cost of calculations may be high due to repetitive nume
coordinate generations. The analytical mapping technique selected here is optimal be
it provides a sharp resolution of the interface and bypasses expensive numerical coorc
generation.

Shokoohi and Elrod [3, 4] used a coordinate mapping technique and streamfunc
vorticity formulation in the analysis of capillary breakup of a cylindrical jet. A speci
discretization technique was used which results in a high consumption of computing
sources. The ADI solution technique provided first-order temporal accuracy. Loh and |
mussen [5] coupled coordinate transformation with standard finite-difference discretiza
and studied flow in a cavity with the side wall moving. Primitive variables were used w
a first-order discretization for time derivatives. Gagbal.[6] employed coordinate trans-
formation, streamfunction-vorticity formulation, and spectral discretization in the analy
of two-dimensional flows infinite in one direction. Temporal discretizations with accurac
up to fourth order supplemented by stability analysis were given. Kang and Leal [7] couj
numerical coordinate generation, finite-difference discretization, streamfunction-vorti
formulation, and the ADI solution procedure in analysis of the deformation of bubbl
Chenet al. [8] used an approach based on coordinate generation and streamfunc
vorticity formulation in the analysis of thermocapillary convection in a rectangular cavi
Time derivatives were discretized using first-order two-point backward finite-differer
formulas and the equations were solved using essentially a point relaxation procedure
presented results were limited to small interface deformations only. No information pert
ing to numerical error was given. Chen and Hwu [9] slightly modified the method giver
[8]and used it for prediction of the transition from a steady to an oscillatory thermocapill
flow regime. Again, the results were limited to small interface deformations only.
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In the present work, we focus our attention on the development of techniques for sim
tions of flows with large interfacial distortions. Geometry of the solution domain is regul
ized using a coordinate transformation method. The field equations are expressed in
of streamfunction and vorticity. All spatial derivatives are discretized using second-ol
finite-difference discretization techniques. Different strategies applied to the discretiza
of time derivatives led to the first-order one-step implicit method, second-order Cra
Nicolson and trapezoidal methods, and a second-order two-step implicit method. T
methods are compared with each other in terms of their accuracy, efficiency, and stab

The paper is organized as follows. Section 2 discusses the model problem. Sect
describes the numerical procedures. Coordinate transformation is defined in Sectior
Field equations expressed in terms of new independent variables are given in Sectior
The one-step implicit method is described in Section 3.3. The Crank—Nicolson methc
discussed in Section 3.4. Section 3.5 is devoted to the trapezoidal method. The two
implicit method is discussed in Section 3.6. A summary of the main conclusions is gi
in Section 4.

2. THE MODEL PROBLEM

Consider a rectangular cavity of length L and height H, as shown in Fig. 1. The up
surface, described by=h(x, t), is a free surface bounded by a passive gas of negligik
density and viscosity. Temperature distribution in the §as Ty(x, t) is assumed to be
known. The motion of the liquid is described by variations of surface tension arising du
thermocapillary effect. The shape of the interface, which is a function of time, results fr
the instantaneous balance of forces at the interface. The contributing factors are the
value of the surface tension (which depends on the local temperature which, in turn, re
from the overall energy transport) and the pressure and viscous stresses associated w
convection field. Physical motivation and the relevant scaling can be found in [10].

In the absence of body forces, the unsteady two-dimensional motion of the liqui
governed by the equations

Uy +vy =0, ReUt + UUx + vUy) = — Py + Uxx + Uyy, (1a), (1b)

Rdvt + Uvy + UUy) = — py + vxx + Uyy, Ma.(Tt + UTX + UTy) = TXX + Tyy, (10), (1d)

Y n
gas 5 gas 1
7,
T. e, gTRI 7 7
y=hed g 7
i 1 . . -
liquid 2 A liquid Z
L Z X 7 A i3
7 7z 7
-L/2 0 L2 -L2 0 +L/2
Physical Domain Computational Domain

FIG. 1. Sketch of the model problem.
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whereu andv are respectively th& andy components of the velocity vectop, is the
pressure] is the temperature of the liquitistands for the time, Re and Ma are respectivel
the Reynolds and the Marangoni numbers, and subsariptst stand ford/dx, d/9y, and
d/0t, respectively. These equations are subject to the following boundary conditions:

x:—%L: u=v=0 T=T, (2a)
x=%L: u=v=0 T=Tg, (2b)
y=0: u=v=T,=0, (2¢)
y=h,t): hy+uhy =v, (2d)

—p+ 2[n2Uy + vy — he(ox + Uy)] (L 4+ h2) " = Cal(L - CaTh(1+h2) 2 (2e)
2hy (—Uy + vy) + (1= h2) (v + Uy) = —(Te + hyTy) (1 +h2) Y2, (f)

(—heTx + Ty (1+h2) 72 £ Bi[T — Ty(x, )] = 0. (29)

In the above, Ca and Bi stand for the capillary and the Biot numbers, respectively.
left and right walls of the cavity are assumed to be isothermal and are kept at con:
temperature3, andTg, respectively. The bottom of the cavity is assumed to be adiaba
Equation (2d) describes the kinematic condition at the interface, (2e) and (2f) describ
balance of the normal and tangential forces at the interface, respectively, and (2g) spe
a general heat transfer condition at the interface. Thermal conditions (2a) and (2b),
the temperature distribution in the gas phég, t) in (29), must satisfy the consistency
conditions at the upper corners. The deforming interface must satisfy the mass consen
constraint

1/2L
/ h(x,t)dx = V. 3

—1/2L

The problem is closed by specifying the type of contact made by the interface at the
walls. Two cases will be considered:

(i) fixed contact points,
h(=1/2L) =1, h(1/2L) =1; (4a)

(ii) fixed contact angles (moving contact points),

hy(—1/2L) =tanf., hy(1/2L) = —tanbg. (4b)

The type of the contact that may exist between the interface and the side walls has a
strong effect on the response of the flow system (see Section 3.3.3.2).
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3. NUMERICAL METHOD

3.1. Coordinate Transformation

The flow problem (1)—(4) has to be solved numerically on an irregular, time-depenc
solution domain (as defined h(x, t)). Application of the transformation

§=x, n=y/hx.t) ®)

maps this domain onto a fixed rectangular domain in the computatignglglane (Fig. 1)
permitting use of standard finite-difference discretization techniques for spatial derivati
The explicit form of the mapping functiom(x, t) is not known and has to be determinec
as a part of the numerical procedure.

3.2. Streamfunction-Vorticity Formulation

The use of the streamfunction-vorticity formulation permits a simple enforcement of
incompressibility condition (1a) which is crucial in the case of a free boundary probl
considered here. Field equations (1) take the form

VY +o =0, (6a)
wy — nhflhtw,, + hfl(wna)g —Yrw,) = VZw/Re, (6b)
T, — nh 7T, + h (¢, T — ¥: T,) = V2T /Ma, (6¢)
where
u= 110)/7 vV = _wx, w=UVx — Uy, (Gd)
v2 = 92 — 2phsh™t i +h2(n 2h2+1)3_2 + (2h2 — hh )nh—zi
&2 S Bgan § an? 5 5 an’
The boundary conditions take the form
£=-1/2L: Yy =¢:=0 T=T, (6e)
£=1/2L: Y =v:=0 T=Tg, (6f)
n=0: v =v,=0, T,=0, (69)
n=1 hi + ¢ =0, (6h)
(hglﬂgé — (1 + hg) h71¢gn + h§h72(1 + h? — hhgg)lﬂn)
-p+2 5
(14hg)
=Cal(l-CaThe(1+hy)~%2 (6i)
— (1= h3) e + (14 h2)*y,, — 2hch = (1+ h2) v, + [(1— h2)hhg
+ 202 (14 hZ)[h ™2y, = —Te(1+h2)™%, (6)

(1+h2)?h 2T, — he (14 h2)"*T, + Bi(T — Tg(6.1) = 0. (6K)
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3.3. One-Step Implicit Method

It is assumed that all quantities are known at timenAt and that their values at
t=(n + 1) At are sought. Herat is the length of the time step. Temperatggé, t) in
the gas phase is changed to its valu¢-at(n + 1) At and the field equations are solvec
keeping the location of the interface and the value of the streamfunction at the inter
unchanged and without enforcing the normal stress (6i) and the kinematic (6h) conditi
We shall refer to this problem as the inner problem or the inner solution. The nori
stress condition is used subsequently to determine the new location of the interface
the kinematic condition is used to evaluate the new value of the stream function at
interface. We shall refer to this part of the solution process as the outer problem or the ¢
solution. The complete solution procedure involves iterations between the inner anc
outer problems until all conditions are satisfied with the desired accuracy. We shall refi
the above iteration as the outer iteration. The flow chart illustrating this process is show
Fig. 2. We shall begin the description of the algorithm with the description of the solut
of the inner problem.

( Previous Time Step )

..........................................................................................................................

Inner Problem
(solve field equations assuming fixed location of the interface and
neglecting normal stress and kinematic conditions at the interface).
Can be solved directly or iteratively. When iterative method is used,
refer to it as inner iterations.

Determine new location of the interface h,,, !
from the normal stress condition Outer Problem
\ (outer iterations)

Determine new value
of streamfunction at the interface
from the kinematic condition

No

Checkif |hyy-hi|[<e

Yes

Next Time Step

FIG. 2. Flow chart for the proposed algorithms.
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3.3.1. The Inner Problem

The field equations are written at tirhe= (n + 1) At in the form

V2wn+1 4 wn+1 — O, (7a)
W™t — 1,-1 1 1 1 1
i I (AL SR TRy
+ 7,](thrl) 1 n+l(wén+l)b _ Van+1/Re= 0, (7b)

wherew*! has been replaced by backward, first-order finite-difference approximation,
hi+1 was replaced by(l/fE *+1), by taking advantage of the kinematic condition (6h). In th
above, superscriptsandn + 1 refer to the time steps, subscriptienotes the value of the
field variable at the interface, amd*! is known from the previous outer iteration (or from
the previous time step in the case of the first outer iteration). The energy transport equ
has the same form as (7b) wiii*+* is replaced byl "+! and Re is replaced by Ma.

A rectangular computational grid of sizes, An in the &, n directions is considered,
with grid lines parallel to thé andn axes and such that the grid fits exactly the geometry «
the computational domain, with the side and bottom walls and the interface as certain
lines. Around a typical interior grid poino, no) we adopt the convention that quantities
at (&0, no) and eight neighbouring points are denoted by subscrifts.0. , 8 as shown in
Fig. 3. Equations (7) are written at each interior grid point and the spatial derivatives
approximated by using second-order finite-differences in the usual manner to give

—2(A1+ A)YST + AT — AgylTh o (Ao + AD ST+ Agyl T+ Agyd T
_A 1//I'H-l_i_ (A2 _ A4),(ﬁn+l+ Aswn-‘rl +1 — 0’ (8a)

—[2(A1 + A2) + ReAslog ™ + [Ar — ReAs (Y5 — i) Jol Tt — Agwl™
+[A2 4+ Ay — ReA7 + ReAs (v — “+1)] ot 4+ Azl
+ [AL+ ReAs (vt — vt |l — Agwg®
+ [A2 — As+ ReA; — ReA5( T — i) o)t + Aswl ™ + ReAswg =0, (8b)
where
A= (A2, A= [1 - nz(hg“)z} (h""1An)=2,  Ag = nhit'(2h"1Ag An)~2,
A= n[2(hF*)? = NI 2 2An] L A = (4hMEAg A,
Ao = (AL Ar =y @A

The boundary conditions for (8) are given by (6e)—(6q), (6j). For (8a) the valug%dfare
known at all grid points on the solid walls and are known from the previous outer iterat
(or from the previous time step in the case of the first outer iteration) at the interface.
(8b) a boundary condition fas"+? is required at the grid points on the side walls. Here, w
use a second-order approximation for the side walls,

n+1 (wanrl 8¢in+1) /(2A52) , (ga)
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where subscripi refers to the wall values, subscriptefers to the internal grid point most
immediate tow and subscripti + 1) refers to the next grid point in the same direction. /£
similar formula for the bottom of the cavity has the form

wzr:)Jrl — (,(pinj-ll . 8win+l)/[2An2(hn+l)2]. (gb)
In the aboveh"+? is considered to be known from the previous outer iteration (or from tl

previous time step in the case of the first outer iteration). The boundary condition at
interface is obtained by substituting (6j) into (6a), resulting in

ot = _2(1+ (h2+1)2> *1( g‘;l)b i (h”*l)’l(l+ (h2+1)2) -1

s (1 () (10, 4 200 ) (10

The reader may note that the firstterm on the right-hand side of (10) arises due to unstea
fects. Inthe abovey i), h™+2, i1 hif ! are considered to be knownf; ™ andh(;* are
evaluated using standard central-difference approximations based on vdilig’Sfadm the
previous outer iteration (or from the previous time step in the case of the firstiteration). E
uation of(y; ")y is discussed in Section 3.3.2.3. Temperature gradight'), is evaluated
using standard central-difference approximationaml)b is determined using one-sided
difference approximation. All spatial discretization formulas are second-order accurat

For the energy equation, values Bf+! are known at the side walls. At the remaining
two boundaries] "1 is determined from the discretized boundary conditions (6g) and (¢
using second-order finite-difference formulas.

Assuming that the location of the interfab&"™ and the value of the stream function
w{,‘“ at the interface are known, the problem (7), supplemented by the energy equatior
the boundary conditions described above, can be solved either directly or iteratively. Ir
present study, we have used different methods and applied them on computers of ve
architectures, including single processor sequential machines and multiprocessor v
machines. The following presentation is based on the Gauss—Seidel procedure, whic
good iterative reference method. Because of this choice, we shall refer to the solutic
the inner problem as the inner iteration. Values from the last outer iteration (or the prev
time step in the case of the first outer iteration) were used as an initial guess for the
variables. The systematic iterative procedure between the various equations consis

FIG. 3. Sketch of a typical computational module used in the interior of the solution domain.

FIG. 4. Sketch of a computational module used to evalyateat the interface.
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performing one complete Gauss—Seidel iteration of (7a), followed by a similar iteratior
(7b) and then a complete iteration of the energy equation, followed by a recalculation o
boundary values o™t and T"**. The iterations were performed until the convergenc
criteria, |gi+1 — G| < &1 and |Res| < &1 with e1 =10"° — 10~ were satisfied at all grid
points. In the abovey stands for any of the flow quantitieg(w, T), Res denotes residuum
of any of the discretized field equations, and subscudginotes the (inner) iteration number.

Sinceh™! andy,{"* are known only approximately, 20%—-30% savings in computation
time can be achieved by relaxing the convergence criterigyrol 0-2 during the first outer
iteration and decreasing it in stages to its prescribed value during the subsequent (c
iterations. The condition for residuum of the vorticity transport equation was usually m
difficult to satisfy. The relaxation factors used in the calculations varied from 1.0 for alm
flat interfaces to 0.1 for very deformed interfaces. These factors had to be further red
with increasing values of Re and Ma.

3.3.2. Outer Problem

The outer problem consists of evaluation of the new location of the interface and the
value ofy** that correspond to the most recent solution of the inner problem. The interf
is determined from the normal stress condition (2e) subject to the contact conditions
and the volume constraint (3). The field variables determined by the inner problem are
constant during solution of the outer problem.

3.3.2.1.Evaluation of the pressure.Normal stress condition (2e) involves the value o
pressure at the interface which has to be determined on the basis of the known soluti
the inner problem. Equations (1b)—(1c) are solved for components of the pressure gra
transferred into theg( 1) plane using (5), expressed in a form suitable for the interface (i.
for n=1), and combined to yield

pe = hew — (14 hZ)h o, — Reh 2y, ((14 hZ) v, + heh ™ (hegh — hZ — 1))
— Re[(l —+ hg)hilwnt — hglﬂgt —+ hizlﬁn [(1 =+ hg)w‘g — Zhhgwggﬂ (118)

The term in the square bracket arises due to unsteady effects. The reader may note tt
above equation does not require knowledge of the pressure from the previous time
Equation (11a) is integrated frofn=0to & =a to get

a

f)(a) = (hga))g:a — (hgw)g:() — /hgga) ds + /B dE, (llb)
0 0

where the first three terms on the right-hand side (RHS) resulted from the integratiol
parts of the first term on the RHS of (11a) addtands for the remaining terms on the RHS
of (11a). Integrals in (11b) are evaluated using the trapezoidal rule based on the same
as used in the determination of the flow field. Direct numerical integration of (11a) is |
advisable because it requires knowledge of the (undefined) values of vorticity at the col
points.

The expression for pressure can be written in general as

PE. 1Lt = P, 1. t) + K(), (12)

wherep denotes normalized pressure satisfying condifid® 1,t) = 0 (i.e., itis described
by (11b)), andK (t) denotes an unknown additive constant.
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The spatial derivatives with respectsian (11a) are evaluated using one-sided secon
order finite-difference approximations based on the grid used in the inner problem. Mi
derivative ofyr att = (n + 1) At with respect to spatial coordinates, is evaluated at the
interface according to

(Wen)o = [3(¥r1 — ¥2) — 4(Y3 — V) + Vs — Vel /(AAE An) + O(AE?) + O(An?), (13)

where the subscripts refer to points shown in Fig. 4. Mixed derivativgswith respect to
space and timég;, ¥, are calculated at the interface according to the formulas

(Weo = [WoHt — yt — vl + ¢l /(2AE AL + O(AL) + O(AED),
Wao = [B(vd™™ —v8) — (vt — v]) + ¥t — v /(2AnAt) (14)
+ O(At) + O(AR?),

where the subscripts refer to grid points shown in Fig. 5. These formulas are first-o
accurate in time and second-order accurate in space.

3.3.2.2.Evaluation of the new location of the interfacelhe normal stress condition
(6i) can be interpreted as a nonlinear ordinary differential equatiorhfgy with the
known variable coefficients expressed in termg &', T"+1, p"*1. This equation involves
unknown pressure normalization const&nand is subject to boundary conditions (4) an
constraint (3). It is assumed that a sufficiently good approximation of the solution is av
able, i.e.,

h - ho + hl, K - Ko + K_‘]_, (15)

whereh,, K, are known andh; « 1, K; « 1. The Newton—Raphson linearization proces

| = (n+1) At
.

§

(A)

d 1

1
- ®)
7 ,

t= (n+1) At
t=nAt

FIG.5. Sketch of a computational module used to evalyatga) andy,, (b) at the interface in the one-step
implicit method.
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leads to the problem fdry, Ky,

hize + H(E)hi: = M(§) + KiN(&), (16a)
hi(—1/2L) =0 or hy(~1/2L) =0, (16b)
hi(1/2L) =0 or hy(1/2L) = O, (16¢)
1/2L
/ h,d¢ =0, (16d)
_1j2L

where

H () = —3Nochogs (1+hZ) ™ — Cal — CaT) (1 +hZ)

X [Mgs — Bhogeh v, +2(1+ hl )],
M (&) = —Ca(l — CaT)*(1+hZ)"? x [2(1+ hZ )y ye, — 2hoevee
—2(1+ hZ — heeeho)hg2hog v, + (1+ hZ) (B + Ko)] — hoge,
N() = —Cal — CaT) (1 +hZ)%2.

The form of conditions (16b)—(16d) assumes thatsatisfies contact conditions (4) and
volume constraint (3). Generalization to the case of time-dependent contact conditions
the (prescribed) variable volume constraint can easily be carried out. In the calculagion
is taken to be the shape of the interface from the previous outer iteration (or shape o
interface from the previous time step for the first outer iteration). For a sufficiently si
time step a good approximatidn, of the interface is always available and this permit
taking full advantage of the quadratic rate of convergence of the iterative process b
on linearization (16). Typically, one or two iterations would reduce the error to seve
orders of magnitude less than the error accepted in the solution of the inner problem
Section 3.3.1).

During each of the above iterations one has to solve problem (16). Thisis alinear prob
thus, its solution consists of a superposition of two linearly independent solutions ar
particular solution of the inhomogeneous problem. Two boundary conditions (16b)—(1
and volumetric constraint (16d) provide the required three conditions for determinatio
the two constants of superposition and the pressure corstant

Problem (16) is solved directly. Equation (16a) is discretized using standard cen
difference formulas and (16d) is approximated using the trapezoidal rule. The grid alre
used for determination of the flow field is used in both cases. The structure of the resu
matrix for the fixed contact point conditions, as well as for the fixed contact angle conditic
together with the optimized matrix inversion algorithm, are described in [2].

Numerical solution of (16) is very efficient and the required computing time is negli
ble, compared with the time required to determine solution of the inner problem (i.e.
determine the flow field).

An alternative version of the algorithm, following Ref. [2], has also been worked o
The normal stress condition (6i) is first discretized, resulting in a set of nonlinear algeb
equations. These equations are then linearized using the Newton—Raphson procedur
resulting matrix has the same structure as the one resulting from the discretization of
and can be solved using the same matrix inversion algorithm. The algorithm based on
(16) was found to be about 20% maore efficient computationally.
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3.3.2.3 Evaluation of the streamfunction at the interfac&.he kinematic condition (6h)
is written for timet = (n + 1)At and the time derivativé!*! is replaced by backward,
first-order finite-difference approximation, i.e.,

(1), = —(h™E — ")/ At + O(AD). (172)

whereh" stands for the known location of the interface at timenAt andh"*! denotes
the most recent approximation bfat timet = (n + 1) At. The above formula is integrated

to give
3 3
yptt = / h"dg — / h"1dg / At (17b)

—1/2L —1/2L

and the integrals are evaluated using the trapezoidal rule. Equation (17b) shows
Ypt(—1/2L) =0, due to selection of the lower limit of integration, apfi**(1/2L) =0,
in view of (3).

Solution of the inner problem requires knowledgeygf*, (v{*),, and(¥:™)p; v
is given by (17b)(¢§+1)b is given by (17a), andl//ggl)b is evaluated using the derivative of
the kinematic conditioriyf; ") = —h;"*, whereh;' is evaluated using finite-difference
approximation similar to (14).

3.3.2.4.0uter iterations. A complete iterative cycle consists of determination of th
flow field (inner problem) followed by determination of the new approximatiomfot and
w{)"“l (outer problem). Such (outer) iterations are carried out until the convergence crit
|hi”jfl1 — hi”+1| < &2 and|Res| < &5 are satisfied at all grid points along the interface. In th
above, subscriptsi + 1 denote (outer) iteration numbers and Res stands for residuum of
normal stress condition. Calculations were typically carried outsyith 10-¢ and required
200-400 outer iterations per time step. TﬁEf was underrelaxed with the relaxation facto
being a strong function of the capillary number Ca and decreasing from 1.0 to 0.001
Ca increasing from 1 to O(1). The reader may recall that Ca is a measure of flexibili

of the interface, with the higher values of Ca corresponding to the “softer” interface.

3.3.3. Performance of the Algorithm

The algorithm is self-starting and is formally second-order accurate in space and
order accurate in time. The second-order spatial accuracy was numerically tested by
and Floryan [2] in the case of a steady algorithm. Since a very similar spatial discretiza
method was used in the unsteady algorithm described here, only spot checks for s
accuracy have been carried out. These checks confirm that, indeed, the numerical r
display error variation proportional td;? andA£2, even for interface deformation reaching
80% of the initial depth of the cavity. The questions of grid size selection and absolute €
are discussed in Section 3.3.3.2.

Extensive tests have been carried out in order to verify the temporal accuracy. The
culations have been repeated with different time stejpsnd the tendency of the results ac
At decreased was observed. If one assumes that the discretization error can be exp
asc(At)“, with ¢ being a constant (which is correct for the finite-difference approximati
used here and for a sufficiently small time st&p), the exponent can be evaluated from
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the following relation:

£23 _ (Aly)" — (Ap)" (18)

e12  (A)* — (Aty)”
In the aboveAty, Aty, Atz are different time steps used in the calculations, anpgand
g2/3 are distances between solutions obtained using time stefpsAty) and(Aty, Ats),
respectively, expressed in terms of a suitable norm. In the present study, a root mean s
norm was used; i.e.,

N N

£2/3 = %Z [(33 — Q)ﬂ 7~ e1/2 = %Z [@ - 33)2} " (19)

i=1 i=1

where S stands for a solution quantity, subscripts 1, 2, 3 refer to solutions obtained v
time stepsAt;, Aty, Ats, respectively, and summation extends dMesuitably selected grid
points. QuantitiesS are evaluated at the same instant of time using the same, sufficiel
refined, spatial grid. In the present study, summations have been carried out over all int
grid points.

If At, =2At;, Atz3=2At,, Eq. (18) can be solved far, i.e.,

a=In(ez3/e1/2)/IN(2). (20)

Since the algorithm is first-order accurate in time, the expected value of the expone
o« =1. Departures from this value can be used as a measure of the loss of accuracy «
algorithm.

3.3.3.1.Moving boundary problem. The first test involves a moving boundary problem
i.e., the motion of the interfack(&, t) is prescribed. In this case it is not necessary t
solve for the interface deformation (Section 3.3.2.2). The value of the streamfunctio
the interface at the next time step is given directly by the kinematic condition (6h) an
can be evaluated either analytically or numerically using (17), depending on the forn
specification ofh(&, t). The solution process involves advancing the interface by a distatr
corresponding ta\t, followed by evaluation of the flow field corresponding to the ne\
location of the interface, and so on.

Table | displays results of a test carried outlfor 6, Re= Ma= 10, Bi= 10", Te€, )=
—£, fixed contact points condition, an initially flat interface, and a motionless liquid. Moti
of the interface in the form

hE ) =1+ <0.2 sin(?) -sin(nt)) (22)

was imposed fot = 0". Calculations were carried out up te= 0.4 (when maximum de-
formation was about 19%) witht; =1/20, At, =1/10, Atz =1/5, andA& = An=1/20.
Results shown in Table | (Test 1) confirm the approximately first-order temporal accur
of the algorithm. The reader may note that the vorticity is singular at the contact po
and, thus, a small reduction in the expected value &f1 should not be surprising. It took
approximately 1088 (flow field) iterations per time st&fy, 1175 per time stept,, and
1550 per time stepts with gy = 107",
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TABLE |
Computed Values of the Exponenix (Eq. (20)) Describing the Temporal Accuracy

Time v w T p h
Test 1 0.4 0.98 0.92 0.94 Not Not
calculated calculated
Test 2 0.8 0.94 0.88 0.93 1.07 1.05
1.6 0.89 0.76 0.91 1.06 1.03
2.2 0.83 0.70 0.90 1.05 1.02
Test 3 0.4 1.97 1.87 1.92 Not Not
calculated calculated
Test 4 0.4 1.8 1.31 1.60 0.98 1.05
0.8 1.63 1.2 1.53 1.00 1.04
1.6 1.05 0.82 1.02 1.02 1.03
2.2 0.85 0.77 0.92 1.05 1.03
Test5 0.8 1.94 1.79 1.81 2.07 2.01
1.6 1.76 1.68 1.78 1.96 1.72
2.2 1.70 1.63 1.75 1.86 1.67

Note Test 1: moving boundary problem, one-step implicit method (for details see Section 3.3.3.1.); Test 2:
boundary problem, one-step implicit method (for details see Section 3.3.3.2); Test 3: moving boundary prol
two-step implicit method (for details see Section 3.6); Test 4: free boundary problem, two-step implicit mett
mixed derivativey,; evaluated using Eq. (32) (for details see Section 3.6); Test 5: same as Test 4, mixed deriv.
¥, evaluated using Eq. (33).

3.3.3.2Free boundary problem. The second test involves the complete problem;i.e., tl
shape of the interface results from the overall dynamics of the liquid and must be calcul:
The interface was initially flat and the liquid was isothermal and motionless. The extel
heating in the fornTy(&, t) = —& was imposed instantaneouslytat 0*. The value of the
capillary number was set to be 0.1 and the remaining test conditions were selected to t
same as in the previous section. No numerical instability problems have been encoun
in all tests that have been carried out.

Figure 6 illustrates the effects of variation of the grid size on the accuracy of the res
at locations where computations are very sensitive to grid refinement. These results
that grid sizeA& = An =1/20 provides satisfactory accuracy.

The values of exponentdescribing temporal accuracytat 0.8, 1.6, and 2.2, when the
maximum interface deformation reaches approximately 7%, 15.5%, and 21%, respecti
are given in Table | (Test 2). It can be seen that the algorithm maintains approxima
first-order accuracy at all times. Figure 7 illustrates variations of the absolute error
function of At at the same test points as in Fig. 6. It can be seenAhat 0.1 provides
sufficient accuracy.

The timing information is based on calculations carried from0.2 to t =0.8 with
e1=10"7, e, =107%. The algorithm required on average 122 inner iterations per one oL
iteration, and 420 outer iterations per one time gi¢p Similar numbers font, were 230
and 338, and foAts, 252 and 322. Overall, solution of the free boundary problem requir
about 10 times more computing time than solution of the moving boundary problem.

Examples of evolution of a flow system consisting of an initially quiescent isothern
liquid with a flat interface that is subject to an impulsive heating in the fog§) = —&
imposed attimé = 0" are shown in Fig. 8 for the case of fixed contact points (Eq. (4a)) a
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FIG. 6. Variation ofw andy at (&, n) = (2.9, 0.9) (A) andh até =1.5 andp até =2.9 (B) as a function of
grid sizeAg, An. Test conditions are described in Section 3.3.32=0.1 in all calculations.

in Fig. 9 for the case of fixed contact angles (Eq. (4b)) witk- 6r = 0. The reader may note
a very strong effect of the type of contact conditions on the evolution of the flow syster

As an additional test, the case of transition from steady to oscillatory convection repo
in Ref. [9] for L =2, Re= 220, Ma=2.2 has been investigated. Results obtained using t
present algorithm are in agreement with those described in [9].

1.4( I 0E+0
h|P

6L y
131 -1E-3

4_

12} -2E-3
L1} %[ -3E-3
1.0t ol -4E-3

FIG.7. Variation ofw andy at(&, n) = (2.9, 0.9) andh at§ =1.5 andp até = 2.9 as a function oAt. Other
test conditions as in Fig. && = An=1/20 in all calculations.
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Time = 2.2 (nax. deformation = 21%)

Time = 0 (flat interface) y
1.2

0.8

0.4

0'0-3 -2 -1 0 1 2 3

Time = 4.2 (max. deformation = 28%) Y Time = 18.2 (max. deformation = 30.4%)

FIG. 8. Flow patterns resulting from an impulsive heating in the foigt¢) = —& imposed at timeé =0".
Fixed contact points case (Eqg. (4a)). Calculations carried out ath- An =1/20 andAt =0.2. Last picture
corresponds to steady-state flow pattern.

Time = 0 (flat interface) Time = 2.2 (nax. deformation = 27%)
y 16 y 1.6
1.2
0.8
0.4 h
00— = 1 i 2z 3
Y 1.6 Time = 4.2 (max. deformation = 45 %) Time = 22.2 (max, deformation = 93%)

FIG. 9. Flow patterns resulting from an impulsive heating in the foijt¢) = —& imposed at time¢ =0".
Fixed contact angles case (Eq. (4b)). Calculations carried outvgith An =1/20 andAt =0.2. No steady state

has been reached.
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3.4. The Crank—Nicolson Method

A relatively high computational cost of the one-step implicit method motivates sea
for a faster algorithm. The Crank—Nicolson method is formally second-order accurat
time; thus it permits use of larger time steps while maintaining the same absolute accu

We assume that all quantities at time-nAt are known and seek their values at time
t =(n+ 1)At. The logical structure of the algorithm is the same as already describe
Section 3.3. The following description is limited only to those elements of the algoritt
that are different from the one-step implicit method.

The vorticity transport equation is written at tihe- (n + 1/2) At in the form

PSS Y21 12 n+l/2 ni1/2 12
n+ - n+ N+
A (R T2 R 2 )
+ (Y212 (y 12 | 92,12 )Re = 0, (22)

wherewy M1/2 has been replaced by central, second-order finite-difference approximat
h{™*/% was replaced byy. "), by taking advantage of the kinematic condition (6h)
and superscripts, (n+1/2), (n+ 1) refer to time steps =nAt,t=(n+1/2)At, t =
(n+ 1) At, respectively. All terms written at tim@ + 1/2) At are then expressed in terms of
their values anAt and(n + 1) At, using linearinterpolation, e.gof **/? = 1/2(wf + ™),
etc. The energy transport equation has the same form as (22pwéthlaced byl and Re
replaced by Ma. The streamfunction at tilne (n + 1) At is computed from (7a).

The spatial derivatives are discretized using the grid and the finite-difference approxi
tions already described in Section 3.3.1. The discretized form of (22) can be easily del
and is omitted from this presentation. The solution to the outer problem has the same lo
structure as described in Section 3.3.2. Pressure is evaluated by writing Eq. (11a) at
t = (n+ 1/2) At and approximating the mixed derivative§ ™', y;™/* as

Weo = (Y5 — v8 — Yt + ¥l] /(2AE AL + O(A?) + O(AE?),
o = [BYET™ —vd) — 4™ —v) + v3™ — vl /2anat)
+ O(At?) 4+ O(ARD), (23)

where subscripts refer to grid points shown in Fig. 10. The remaining quantities in (11a]
expressed in terms of their valueg at nAt andt = (n + 1) At using linear interpolation.
The resulting equation is then solved fp{g1+1 and subsequently integrated to g#t.
Details of this process are omitted. One may note (ftat depends explicitly op".

The new location of the interface is evaluated using the method described in Sec
3.3.2.2. The value of the streamfunction at the interface is evaluated by writing the kinerr
condition (6h) at time = (n + 1/2)At, replacing the time der|vat|v|a”+1/2 by central,
second-order finite-difference approximation and expres(s};ré‘ér 12 )b in terms of ()
and(w””)b using linear interpolation. The resulting equation is solved(f@'?*l)b and
integrated, resulting in

£ £
W™ = —yp — 2 / h"dg — / h" d& /At (24)

—1/2L —1/2L

and the integrals are evaluated using the trapezoidal rule.
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FIG.10. Sketch of a computational module used to evalydfe”’” (A) andy;;™/* (B) at the interface in the
Crank-Nicolson method.

The algorithm requires knowledge of the flow at only one time step in order to predict
motion of the liquid at the next time step. The algorithm is in principle self-starting. Corri
results will be obtained, however, only if a consistent set of initial conditions is availalt
including the flow field, the shape of the interface, ggdor h;). The determination of such
conditionsisin practice nearly impossible. The algorithm may produce very inaccurate (¢
wrong) results when inconsistent data are used. This can be seen, for example, in Eq
which requires values a@f, atn = 0 in order to predict, atn = 1. The above conclusion has
been confirmed by various tests involving grid convergence studies and comparisons
results obtained using other methods described in this paper. It is recommended, ther
that when no good initial data is available the Crank—Nicolson algorithm should not be
for the first time step. In all calculations reported here the one-step implicit method
used to start the calculations.

The algorithm is formally second-order accurate in time and space and, thus, it coulc
tentially significantly reduce the cost of calculations. Unfortunately, the temporal accur
gains are offset by numerical instability problems which dictate the use of very small t
steps.

The numerical instabilities will be illustrated in the context of the test problem already
troduced in Section 3.3.3.2, i.&. = 6, Re=Ma= 10, Ca= 0.1, Bi = 10%, the fixed contact
points condition, an initially flat interface, and a motionless liquid subject to an instar
neous heatingy(&, t) = —& imposed at =0", A§ = An=1/20, At =0.2.
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FIG. 11. Variations of vorticity as a function of time &, n) = (—3, 0.1) obtained using the Crank—Nicolson
method withA¢é = Anp =1/20, At =0.2: (A) flat nondeformable interface; (B) curved nondeformable interface

(C) complete free boundary problem. Other details of the tests are described in Section 3.4. Results obtainec
the one-step implicit method are shown for reference purposes.

Figure 11A illustrates computed valueswhs a function of time at a test point= —3,
n=0.1 for a reference fixed boundary problem in which the interface is flat and d
not deform. The reader may note the appearance of a numerical instability at the
beginning of the calculations which is due to discontinuity of the initial conditions. Tl
algorithm damps out this instability and the results for 1 obtained using the Crank—
Nicolson method overlap with those obtained using the one-step implicit method.

Figure 11B illustrates the behaviour of the algorithm for a curved, but fixed, interfa
The shape of the interface used in the calculations was obtained by solving the com
problem fort — oo using the one-step implicit method. It can be seen that the numeri
instability triggered by the discontinuity in the initial conditions is somewhat larger (th
for the flat interface) but the algorithm is able to damp it out. A very weak instability appe
for t > 3 when the solution reaches the steady-state limit. This instability is very ben
and does not prevent generation of useful results.

Figure 11C illustrates the behaviour of the algorithm for the complete problem wh
the location of the interface has to be calculated. The occurrence of a very strong nume
instability is clearly visible. This instability is associated with the motion of the interfac
as documented by the tests discussed above.

A series of tests has been carried out in order to assess the effect of the preser
discontinuity in the initial conditions on the numerical instability. The heating was assun
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FIG. 12. \Variations of vorticity as a function of time &, n) = (—3, 0.1) obtained using the Crank—Nicolson
method withA¢ = An =1/20, At = 0.2 for different rates of heating: (A) curved nondeformable interface, resul
obtained using the one-step implicit method are shown for reference purposes; (B) complete free boundary pre
Functionsf, (t), f,(t), f3(t) describe differentrates of heating (see Eq. (25)). Other details of the tests are desct
in Section 3.4.

in the form
TyE, 1) =—£- fi(t), i =123, (25)

where f1(t) = H(t), fo(t) =1—exp(—0.1t?), f3(t) =1 — exp(—0.02t?), and Ht) denotes
the Heaviside function. The reader may note that the rate of heating is reduced by re
ing f1(t) with fo(t), and fo(t) with f3(t). Figure 12A, displaying results for the case o
deformed but fixed interface (as in Fig. 11B), shows that the reduction in the strengt
the discontinuity in the initial conditions eliminates the instability. Figure 12B, displayi
results of the complete problem, shows that the reduction of the initial discontinuity del
the onset of the instability, but does not eliminate it. It can be concluded that the instak
is not triggered by the initial discontinuity but is an intrinsic property of the algorithm.
Figure 13A shows the effect of reduction of the grid size on the instability, while Fig. 1.
shows the effect of reduction of the temporal step size. It can be concluded, on the ba:
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FIG. 13. \Variations of vorticity as a function of time &g, n) = (—3, 0.1) for the complete free boundary
problem obtained using the Crank—Nicolson method: (A) effects of changing the spatial gritlésize) with
At =0.2; (B) effects of changing step sizet with A& = Ay =1/20. Other details of the tests are described ir
Section 3.4. Results obtained using the one-step implicit method are shown for reference purposes.

these results, that the algorithm is most likely to be conditionally stable. While no attel
has been made to determine the critical stability conditions, the results shown in Fig
suggest that very small step siz&§, An, At might be required in order to stabilize the
calculations. Under such conditions, the Crank—Nicolson algorithm will be more expen:
computationally than the one-step implicit algorithm.

The final test deals with the moving boundary problem that has already been introduc
Section 3.3.3.1. In this problem the motion of the interface is prescribed by Eq. (21). Re:
obtained at\& = An =1/20 andAt = 0.2 shown in Fig. 14 demonstrate the occurrence ¢
a numerical instability very similar to the one described above, even in this (much simg
problem. The strength of the instability appears to be similar for both (the free and
moving) boundary problems.

3.5. The Trapezoidal Method

Numerical stability problems encountered in the Crank—Nicolson method make
method impractical due to the high computational cost. The present section is dev
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FIG. 14. \Variations of vorticity as a function of time &§, n) = (-3, 0.1) for the moving boundary prob-
lem with the motion of the interface prescribed by Eq. (21) obtained using the Crank—Nicolson method
A& =An=1/20, At =0.2. Other details of the tests are described in Section 3.4. Results obtained using
one-step implicit method are shown for reference purposes.

to an alternative algorithm that is also second-order accurate in time and also relie
information from just one previous time step, i.e., the trapezoidal method.

The vorticity transport equation is integrated from nAt tot = (n + 1) At using the
trapezoidal rule and rearranged into the form

At At
- G ="+ —G", (26)

n+1
@ 2 2

whereG = —h™! (Y, 0: — Yz 0,) — nh™ w, (Ye)p + V2w/Re hy was replaced byy: )y,
superscript:, n+ 1 refer to time steps, and subscriptdenotes the value of the field
variable determined at the interface. The energy equation is integrated in a similar fas|
The streamfunction at time= (n + 1) At is computed from (7a).

Determination of the shape of the interface at tirae(n+1) At hinges on prior evaluation
of the pressure at that time. Use of Eq. (11) reduces the temporal accuracy to first-c
because of the presence of mixed derivatives. Second-order accuracy can be maint
provided that values of various interfacial quantities ffef (n — 1)At andt =nAt are
available. Since our objective is to develop an algorithm that relies on information availe
at only one previous time step, a completely different method for pressure evaluation
to be found.

Equation (1b) is integrated betwees nAt andt = (n+ 1) At using the trapezoidal rule
and expressed in thé& (n) plane using the streamfunction and vorticity. Equation (1c)
multiplied by hg, integrated between=nAt andt = (n + 1) At using a combination of
integration by parts and the trapezoidal rule and making use of kinematic condition (
The resulting two equations are combined and simplified using (6a) to give the exp
sion

PPt = —pl + (Zo+ 2™+ (Zo + Zo)" + 257 - Z8, (27)
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where
Zl = (z)ghg,
Z; = —h™ (14 hf)w, + Rey[—w + h™he g, ] + Reh ™y, [—h™(1+ h?) v,
+ (hee — h7*h2) v — h=2he (—hZ + hhge — 1)y,
Z3 = 2Re(At) H[hey: — h™ (14 hZ)y,].
In the above, subscriptsandn + 1 refer to time steps. Equation (27) is integrated betwee
£ =0ands =ato getf";i.e.,

p(@) = "0 — B"(@) + B"(0) + [(wh)™ + (@ho)"],_,

a n+1 a n
— [(a)hg)n_H' + (a)h;)”]gzo - /a)hg dé;' - /a)hg d%
(o] (o]
a a
+/(z'2‘+1 +25) d& + /(zg+1 — Z§) d& + K", (28)
(o) (o)

The remaining integrals are evaluated using the trapezoidal rule. One may note that (2
quires knowledge of the pressure at the previous time step. The new location of the inte
is evaluated using the method described in Section 3.3.2.2. The value of the streamfun
at the interface is evaluated by integrating the kinematic condition (6h) betiveert
andt = (n + 1) At using the trapezoidal rule and integrating with respeét tm get

3
W™ = =My — 2(at) 7! / (h"* — h") dé, (29)

—1/2L

where the remaining integral is to be evaluated using the trapezoidal rule.

The algorithm requires knowledge of the flow at only one time step in order to predict
motion of the liquid at the next time step. While the algorithm is, in principle, self-startir
it requires a consistent set of initial conditions, as was the case with the Crank—Nico
method (see Section 3.4). Because such conditions are rarely available, it is recomme
that the trapezoidal method should not be used for the first time step. In all calculat
reported here the one-step implicit method described in Section 3.3 was used to sta
calculations.

The algorithm is second-order accurate in time but, unfortunately, suffers from numel
instabilities which dictate the use of rather small time steps. These instabilities are we
than those found in the case of the Crank—Nicolson method, however.

The numerical instabilities will be described in the context of the same test problen
used to illustrate the Crank—Nicolson method (see Section 3.4) and with the same sj
and temporal grid resolutions, i.&\§ = An=1/20 andAt =0.2.

Figure 15A shows variations af as a function of time at a test point= —3, n = 0.1 for
a reference problem, where the interface is flat and fixed. An instability due to discontin
of initial conditions can be observed. This instability is damped out fed. Figure 15B
illustrates the behaviour of the algorithm for a curved but fixed interface, whose shape
selected in the same way as in the case of the Crank—Nicolson method (Section 3.4
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FIG. 15. Variations of vorticity as a function of time &g, n) = (—3, 0.1) obtained using the trapezoidal
method withA¢ = An =1/20, At =0.2: (A) flat nondeformable interface; (B) curved nondeformable interface
(C) complete free boundary problem. Other details of the tests are described in Section 3.5. Results obtainec
the one-step implicit method are shown for reference purposes.

instability due to discontinuity in the initial conditions is quickly damped out and no ne
instability appears, unlike the case of the Crank—Nicolson method (see Fig. 11B). Figure
illustrates the behaviour of the algorithm for the full problem, where the location of t
interface has to be calculated. The instability does occur, but it is much weaker than ir
case of the Crank—Nicolson method (see Fig. 11C).

Figure 16 shows that smoothing out the discontinuity in the initial conditions throu
reduction in the rate of heating (see Eqg. (25)) eliminates the instability. A very weak in:
bility appears spontaneously for- 25 when the solution reaches steady-state limit, but
does not prevent generation of useful results.

Figure 17 shows that the reduction of the spatial grid size has a very small effec
the instability, at least for the range of grids considered. Figure 18 demonstrated tha
reduction of the time stept significantly reduces the instability. Figure 19 deals with th
case of the motion of the interface prescribed by Eq. (21). No instability is detected, ur
the case of the Crank—Nicolson method (see Fig. 14).

It can be concluded, on the basis of the above tests, that the trapezoidal meth
conditionally stable. No attempt has been made to determine the critical stability conditi
The available results show, nevertheless, that the grid and step sizes required to stz
the method are too small to make it competitive with the one-step implicit method.
trapezoidal method is more stable than the Crank—Nicolson method and, unlike the Cr
Nicolson method, it can be used to solve the moving boundary problems (with the presci
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FIG. 16. Variations of vorticity as a function of time &g, n) = (—3, 0.1) obtained using the trapezoidal
method withA& = An =1/20, At =0.2 for different rates of heating for the complete free boundary problen

Functionsf,(t), f,(t) describe different rates of heating (see Eqg. (25)). Other details of the tests are describ
Section 3.5.

motion of the interface). The instability occurs only for free boundary problems, where
location of the interface has to be calculated.

3.6. The Two-Step Implicit Method

The numerical instability problems identified in the case of the Crank—Nicolson &
trapezoidal methods made them uncompetitive compared with the one-step implicit met
In this section we shall continue our search for a more computationally efficient (and sta
algorithm and consider a two-step implicit method.

1.6E-2 T T T T
@
1.2E-2
8.0E-3
4.0E-3 | —— Trapezoidal A = An = 1/20
/ —.— One-Step Af =An=1/20
0.0E+0 & —e=— Trapezoidal AE = An=1/30 |

—l— One-Step A:t=An=1/30

—3—  One-Step AL =An=1/40

-4.0E-3 : L : L .
0 2 4 t 6 8 10

FIG. 17. Variations of vorticity as a function of time &g, n) = (—3, 0.1) obtained using the trapezoidal
method for the complete free boundary problem with different step &ized\n and withAt = 0.2. Other details
ofthe tests are described in Section 3.5. Results obtained using the one-step implicit method are shown for ref
purposes.
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1.6E-2 , T ¥ T T
w0 —+— Trapezoidal, At = 0.2

1.2E-2 ¢ —@— Trapezoidal, At=0.1 i
One-Step, A t=0.1

8.0E-3

4.0E-3

0.0E+0 ! . )
0 5 10 t 15 20

FIG. 18. Variations of vorticity as a function of time &g, n) = (—3, 0.1) obtained using the trapezoidal
method for the complete free boundary problem with different step gizeand with A§é = Ay =1/20. Other
details of the tests are described in Section 3.5. Results obtained using the one-step implicit method are shc
reference purposes.

In the further considerations, it is assumed that all flow quantities at timgs — 1) At
andt =nAt are available. The logical structure of the algorithm is the same as alre
described in Section 3.3.

The vorticity transport equation is written at tihe- (n + 1) At in the form

3™ — 4" 4+ "1

+ (hn+1)_l(1/f,?+l . w2+1 _ _l//.érH-l . wn+1)

2At !
+ n(hn+l)71w2+l (wénJrl) b= Van+1/Re= 0, (30)
0.4 : , . -
—wf=—  Trapezoidal

02r — One-Step Implicit 7
(X1} WAV VA VA VAVAVAVAVAYE
-0.21 7

0 5 10 t 15 20

FIG. 19. Variations of vorticity as a function of time &g, n) = (—3, 0.1) obtained using the trapezoidal
method for the moving boundary problem with the motion of the interface prescribed by Eg. (21) v
A& = An=1/20, At =0.2. Other details of the tests are described in Section 3.5. Results obtained using
one-step implicit method are shown for reference purposes.
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FIG.20. Sketch of a computational module used to evalyat¢A) andy,; (B) at the interface in the two-step
implicit method.

whereo™! has been replaced by backward, second-order finite-difference approximat
hf+1 was replaced bng‘*l)b using (6h), superscripts— 1, n, n 4 1 refer to time stepd
denotes the value of the field variable at the interface hérid is considered known. The
energy equation has the same form as (30) witkplaced byT, and Re replaced Ma. The
streamfunction is computed from (7a).

The spatial derivatives are discretized using the grid and the finite-difference approxi
tions already described in Section 3.3.1. The discretized form of (30) can be easily del
and is omitted from this presentation.

The magnitude op?+l isgiven by Eq. (11b). Spatial derivatives are evaluated as descril

in Section (3.3.2.1). Mixed derivatiwg:; has been evaluated using the formula

Wevo = [3(v™ — ™) —a(yd — ) + 5t — i /(AAtAE)
+ O(At?) 4+ O(AE?), (31)

where subscripts refer to points shown in Fig. 20A. Two types of formulas were used
Y, i.€., either

o = [TYGTH+8(y] — v —yd) — vt + it + vi ] /dAtan)
+ O(AD)? + O(At - Ap) + O(Ap)? (32)
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or

(Wo = [3(3Yo™ — 4yt + y3™) —4(3yg — 4y7 +v3) +3yg t — 4yl
+y5 Y /(4atAn) + O(At)? + O[(AD? - (An)?] + O(An)?, (33)

where subscripts refer to points shown in Fig. 20B. Expression (33) is preferred bec
it is second-order accurate in time. Equation (32), while being only first-order accu
in time, is nevertheless acceptable because the absolute ef@s An) and, thus,
sufficiently small for most applications. Integration pg“ is carried out as described in
Section (3.3.2.1). The new location of the interface is evaluated using method describ
Section 3.3.2.2. The streamfunction at the interface is evaluated by writing the kinen
condition (6h) at time = (n + 1)At and replacing the time derivativé'+* by backward,
second-order, finite-difference approximation; i.e.,

(21), = —(@h™L = 4n" 4 h"L)/2A1) + O(AD)?, (34)

whereh"1, h" denote the known locations of the interface at tilnegn — 1) At, t =nAt,
respectively, anti"t! denotes the most recent approximations et timet = (n + 1) At.
Integration of (34) gives

& & &
"y =13 / h"lde — 4 / h"d& + / h"-1de / (2At),  (35)

—1/2L —1/2L —1/2L

where all integrals are evaluated using the trapezoidal rule.

Since the algorithm requires information from two previous time steps in order to pre
the behaviour of the flow at the next time step, the algorithm is not self-starting. All res
reported here have been obtained with the one-step implicit method used to initiate
calculations. No numerical instability problems have been encountered.

The algorithm is formally second-order accurate in space and time. The spatial acct
was tested by Chen and Floryan [2] in the case of a steady algorithm. Since a very sii
spatial discretization is used here, only spot checks for spatial accuracy have been ci
out. These results do confirm that the error variation is proportionshfaandA£2 even for
large interfacial deformations. The questions of grid size selection and absolute acct
are discussed in the following paragraphs.

The first test involves the moving boundary problem introduced in Section 3.3.:
The reader may recall that the motion of the interface is prescribed by Eq. (21). Ca
lations were carried out fron= 0 tot = 0.4 with At; =1/20, At,=1/10, Atz=1/5, and
A& = An=1/20. Results shown in Table | (Test 3) confirm the approximately second-or
temporal accuracy of the algorithm. It took approximately 875 of (the flow field) iteratic
per time stepAty, 960 per time stepit,, and 1100 per time stefats with e; =107,

The second test involves the complete problem introduced in Section 3.3.3.2. The re
may recall that the location of the interface has to be calculated as a part of the soll
procedure. Eq. (33) is used to approximédg unless otherwise noted.

Figure 21 illustrates the effects of variations of grid size on the accuracy of the resul
locations where computations are very sensitive to grid refinement. These results shov
the grid sizeA& = An =1/20 provides sufficient accuracy.



138 HAMED AND FLORYAN

0.0E+0 - 0.0t : : : ,
W ®
-1.0E-3+ -0.1
——  An=AE=1/10
2.0E-3+ -0.2 _+_ An=AE=1/20
—@— An=AE=1/30
3.0E-3F -0.3 —A—  An=At=1/40
(A)
4.0E-3L -0.4 ' . - .
0 5 10t 15 20
1.4' 6 T T T T
h
13+
1.2+
—@—  An=AE=1/10
2 ——  An=AE=1720 |
L —@—  An=AE=1/30
—A—  An=AE=1/40
(B)
1.0l 0 . . . )
0 5 10t 15 20

FIG. 21. Variation ofw andy at(&, n) = (2.9, 0.9) (A) andh até = 1.5 andp até =2.9 (B) as a function of
grid sizeAg, An. Test conditions are described in Section 26= 0.2 in all calculations.

Values of the exponent describing temporal accuracy &t 0.8, 1.6, 2.2, when the
maximum interface deformation reaches approximately 7%, 15.5%, and 21%, respecti
are given in Table I. Test 4 was carried out with Eq. (32) (which is first-order accurate
time) used to approximate the mixed derivatpsg. The reader may note that initially, when
deformation is small, the computed field is approximately second-order accurate in time
the magnitude of the deformation increases, the first-order approximation of the interf
effects begins to affect the whole flow field. & 2.2 all quantities are approximately first-
order accurate. Test 5 was carried out with Eq. (33) used to approximat€he results
demonstrate that the algorithm delivers approximately second-order temporal accura
all times. Figure 22 illustrates variations of the absolute error as a functiahatithe same
test points as used in Figs. 6 and 7. It can be seemthat0.3 provides sufficient accuracy.

The timing information is based on calculations carried out ftea0.2 tot = 0.8, with
e1=10"" ande, =107%. The algorithm requires on average 125 inner iterations per o
outer iteration, and 500 outer iterations for;. Similar numbers font, were 154 and 420
and for Atz were 174 and 392. If one uses the same time step for the one-step and
step implicit algorithms, the two-step method is 1.2 times faster. If one wants to main



NONISOTHERMAL CAPILLARY INTERFACES 139

L4r [ OEvOr
h|P
)|y
13 | a3t
4t
12} | 2E3}
11} 2 3E3)
1ol ol 4p3l -0.48 :

0 5 IOt 15 20

FIG. 22. \Variation ofw andy at(&, n) = (2.9, 0.9) (A) andh at¢ = 1.5 andp at¢ =2.9 (B) as a function of
At. Other test conditions as in Fig. 2Ag = An=1/20 in all calculations.

approximately the same absolute accuracy and selectatsay.1 for the one-step method,
and At = 0.3 for the two-step method, the later method is 2.7 times faster.

As an additional test, the case of transition from steady to oscillatory convection repo
in Ref. [9] for L =2, Re=220, Ma= 2.2 has been investigated similarly, as in the case |
the one-step implicit method (see Section 3.3.3.2.). Results obtained using the one-ste
two-step methods described here agree with each other and are in agreement with
described in [9].

4. SUMMARY

A family of algorithms for analysis of the dynamics of unsteady nonisothermal capill:
interfaces has been developed. The algorithms solve the unsteady free boundary pre
for the Navier—Stokes and energy equations. Accurate modelling of the surface ter
effects and the viscous stress at the interface is assured by implementation of the
dinate transformation method. The unknown time-dependent solution domain is maj
onto a fixed rectangular computational domain with the explicit form of the time-depenc
mapping to be determined as a part of the numerical procedure. All algorithms ha
similar logical structure and involve iterations between the inner and outer problem
the new time level. The inner problem consists of evaluation of the flow field for the
sumed location of the interface, and the outer problem involves adjustment of the inter
so that the normal stress and the kinematic conditions are satisfied. The algorithm:
streamfunction-vorticity formulation for the flow variables. All spatial discretization fo
mulas are second-order accurate. Different treatment of time derivatives lead to the one
first-order implicit method, the second-order Crank—Nicolson and trapezoidal methods,
the two-step second-order implicit method. The Crank-Nicolson and trapezoidal mett
were found to be non-self-starting (for practical applications) and subject to critical stab
conditions and, thus, are not recommended. The one-step and two-step implicit met
were found to work very well for a wide range of parameter values. The two-step met
is not self-starting but is about three times faster (for the same absolute accuracy)
the one-step method. Various tests have shown that the algorithms deliver the theoret
predicted accuracy, even for very large interfacial distortions.
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